Member functions

Lecture-3

Scope

Access functions

Utility functions

Constructors

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* How to prevent multiple inclusions of header file?

Access and utility functions

* Access functions - public functions that usually read or display
the data(members)

predicate functions — to test truth or falsity of conditions like
isPositive()

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* Utility functions — private functions that support the
operations of other member functions

Example

class salesperson

{

public:
void getsales();
void setsales();

void printannualsa]es();
private:

double totalannualsales();
double sales[12];

A

Access functions

Utility functions

o
N
o
9\
(97]
—i
e
S
©
=
=
©
S
>
©
=
=
§

[nitialization of data members

* Can we initialize the data members of the
objects, at the time of its creation?
class employee

{

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

double wage; char name[80];

void putwage(double w); double getwage();
void putname(char *); void getname(char *) ;

5
int main() { employee ted; };

Object creg

Constructors

* A constructor is a special function
that must be defined with the same name as the class

The constructor call occurs implicitly when the object is created

We can write initialization code for data members in the
constructor

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

Should be declared as public members

Constructors (contd..)

* Cannot return values

» C++ requires a constructor call for each object that is created,
in any class that does not explicitly include a constructor, the

compiler provides a default constructor — a constructor with
no arguments

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

* Notes — if a constructor with arguments is specified, c++
will not implicitly create a default constructor

Example

* class stack {

private:
int stck[100];
int top;
public:
stack();

void push(int i);

int pop();

5

stack::stack()
{ top=0;
cout<<‘initialized”; }

iInt main()

{

stack s1;:

}

o
N
o
9\
(97]
—i
e
S
©
=
=
©
S
>
©
=
=
§

Parameterized constructors

* To initialize the data members through constructors, we can
use parameters in the constructors

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

class stack { stack::stack(i)
private: int stck[100]; { top=i; cout<<“initialized”; }
int top;

public: stack(int i);
void push(int i);
int pop();

int main()
{ stack s1(1); }

Parameterized constructors (contd...)

* Initial values should be passed as arguments. The object
creation can take either of the two forms

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

stack s1=stack(1)
stack s1(1);

Default arguments

* C++ allows us to call a function without specifying all its arguments

* Function assigns a default value to the parameter which does not
have a matching argument in function call

* Specified when the function is declared

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

float amount(float principal, int period, float rate=0.15)

Constructors with default argumen

* Itis possible to define constructors with default arguments.

o
N
o
9\
(97]
—i
e
S
©
=
=
©
S
>
©
=
=
§

class stack { stack::stack(int i=0)
private: int stck[100]; { top=i; cout<<‘initialized”; }
int top;

public: stack(int i=0);
void push(int i);
int pop();

int main()
{ stack s1(1); stack s2; }

Preventing multiple inclusion of
header file

* Preprocessor wrapper - #ifndef #endif

#ifndef EMPLOYEE_H
#define EMPLOYEE_H
class employee
{ I/ class begins
char namel[80];
public: void putname(char *); void gethname(char *) ;
private: double wage;
public: void putwage(double w); double getwage();
}; Il class ends here
#endif

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

Class Assignment

* What is the difference between a local variable and a data
member?

* Find errors —

class time {

public : // some functions are declared
private : int hour=0; int min=0; int second=0;

o
AN
o
(Q\]
o
—i
>
p—
©
>
[
©
s
>
©
<
=
=

